Emission Control for Coal Fired Thermal Power Plants under the premise of Promulgated Indian Emission Standards

Dr. Amitava Bandyopadhyay Professor & Head

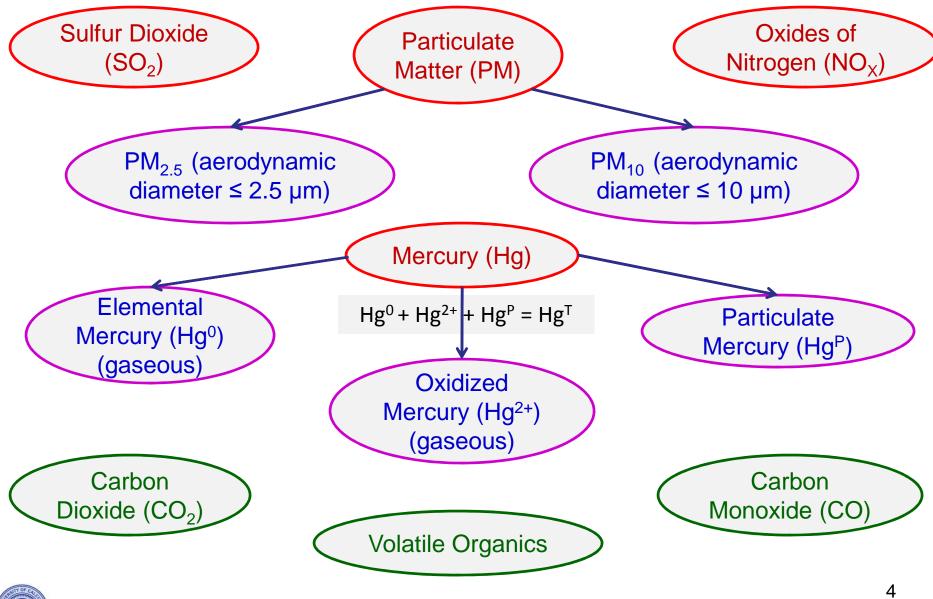
Department of Chemical Engineering. University of Calcutta Ex-Senior Environmental Engineer, WBPCB Ex-Member: State EIA Authority, Jharkhand, MoEFCC, Govt. of India

abchemengg@caluniv.ac.in; amitava.cuche@gmail.com

Webinar

Organized by Excellence Enhancement Centre (EEC) for Indian Power Sector (An Initiative of Indo German Energy Cooperation) December 28, 2020

Presentation Domain


- # Emissions from coal fired TPPs & control
- # Newly promulgated emission standards for Indian coal fired TPPs, revised timeline & challenges before the power industries
- # Current status on installation & commissioning of FGDs in Indian TPPs
- # Multi Pollutant Control Technology for coal fired TPPs A critical review under Indian perspective
- # Research on CO₂ Capture in India: A brief assessment under the premise of new emission standards
- # Assessing the current Indian scenario
- # Concluding Recommendations

Emissions from Coal Fired Thermal Power Plants & Control

Emissions from coal fired Thermal Power Plants

Composition of Flue Gas in Indian Coal fired Thermal Power Plants (TPPs)

Emission ranges of Air Pollutants From plant (10 to 15) monitored data (Paliwal, CPCB)

- Particulate Matter (PM)
- Sulfur Dioxide (SO₂)
- Oxides of Nitrogen (NO_x)
- Mercury (Hg)

= 30 – 350 g/Nm³ [with ESP]

- = 800 1200 mg/Nm³
- = 200 700 mg/Nm³
- = 0.005 0.0185 mg/Nm³

• Carbon Dioxide (CO₂)

= 8 – 12 % [general range]

Ref.: S.K.Paliwal. Environmental Regulations for Coal based Thermal Power Plant. Central Pollution Control Board. Delhi, India. 17th WCAC & 9th BAQ Conference at Busan, South Korea Aug 29 – Sep 02, 2016

Control options to reduce PM Emission

Control of Emission of Particulate Matter (PM) Electrostatic Precipitator (ESP) Bag (Filter) House Wet Scrubber

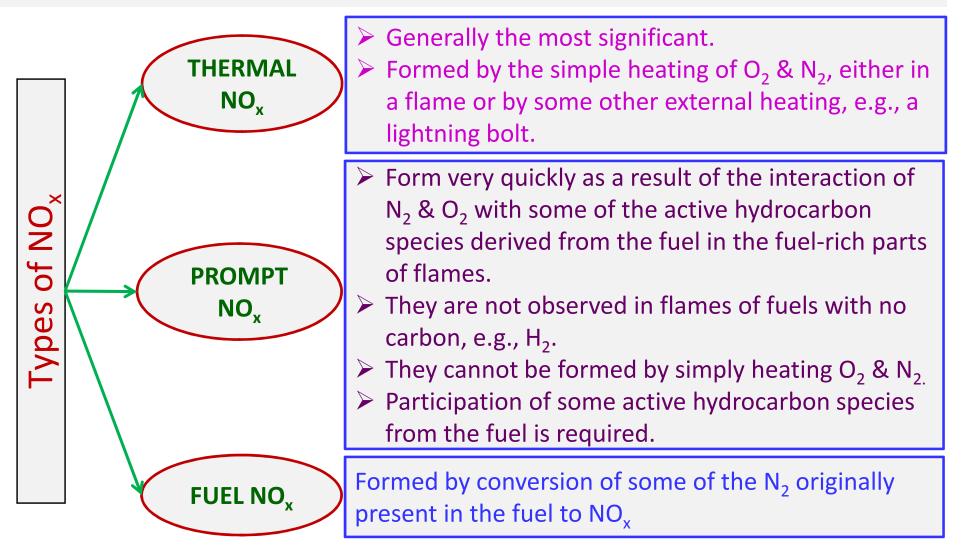
> Device/s could be installed either alone or in combination depending upon the stringencies of emission regs & operating conditions

Control options to reduce SO₂ emission (Flue Gas Desulfurization: FGD)

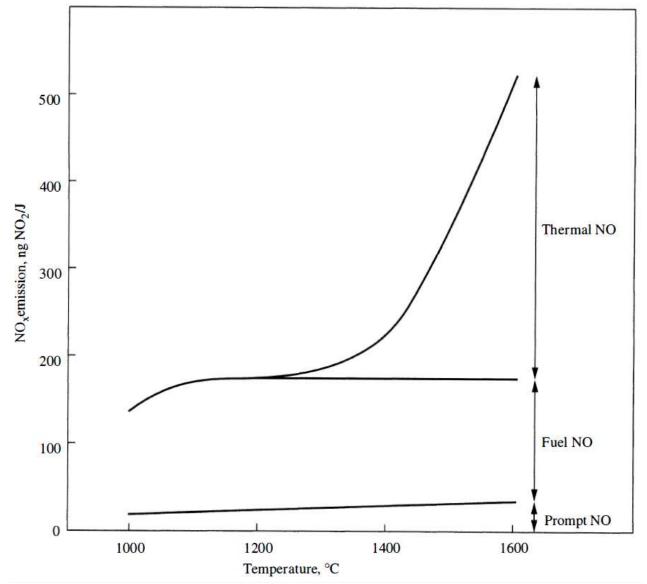
Historic development of FGD

- FGD studies began in 1850 (ca) in England
- 1st Limestone based wet FGD commercialized in 1931 at Battersea Power Station under London Power Company
- Experiments on FGD in water commenced in 1960s
- Developed initially for catering Coal Fired TPPs
- Applied to TPPs using coal with S content ~ 3% (extended to low S coal also)
- Limestone based wet FGD reduces only SO₂ emission from the TPPs

Ref.: A History of Flue Gas desulfurization Systems since 1850. JAPCA. 27, 10, 948–961, 1977 Kohl, A. & Nielsen, R. Gas Purification. Gulf Publishing. USA. 5th Ed. 1977


Summarized information on FGD for TPPs

Process	Alkaline Reagents	Inlet SO ₂ (ppm _v)	By Products	Efficiency (%)
Lime Slurry	CaO	<100 - 6,500	Calcium	90 - 95
Limestone Slurry	CaCO ₃	1000 - 4,500	based	~95
Spray Drying – Lime	CaO, Ca(OH) ₂	<100 - 3,000	solids	90 - 95
Dual Alkali: Sodium + Lime stone or Lime	$(NaOH/Na_2SO_3/Na_2CO_3) \& CaCO_3 or Ca(OH)_2$	1,200 – 1,50,000		99+
Dual Alkali: Dowa	$CaCO_3 \& Al_2(SO_4)_3$	1,000 - 25,000		85 - 98
Once Through Seawater	HCO ₃ -	Up ~2,000		~98
Once Through Sodium	NaOH or Na ₂ CO ₃	<100 - 10,000	$Na_2SO_3;$ Na_2SO_4	99+


Ref. A.Bandyopadhyay & M.N.Biswas. Modeling of SO2 scrubbing in spray towers. Science of the Total Environment. 383, 25–40, 2007.

Some information about NO_x emission

Estimated contributions of 3 NO_x to total NO_x formation in coal combustion

Ref.: Noel de Nevers, Air Pollution Control Engineering. 2Ed, Waveland Press, Inc. 2000

10

Control options to reduce NO_x emission

- **COMBUSTION NO_x CONTROL PROCESSES**
- POST-COMBUSTION NO_x CONTROL PROCESSES
- Combined NO_x/SO₂ processes
- Other NO_x- only processes

COMBUSTION NO_x CONTROL PROCESSES

- Low-Excess Air (LEA) firings an efficient & practical operational control strategy since high excess air causes high NO_x emissions.
- Over Fire Air (OFA) allows fuel to burn initially with minimal air and sometimes at a deficiency of air (sub-stoichiometrically) with additional air introduced as over fire air. Over fire air ports are located above the highest elevation of burners.
- Low-NO_x Burners (LNB) reduce NO_x emissions by reducing the formation of thermal & fuel NO_x in the combustion area. This is accomplished by reducing flame temperatures by staging & controlling secondary air.

Control options to reduce NO_x emission

POST-COMBUSTION NO_x CONTROL PROCESSES

Selective Non-Catalytic Reduction (SNCR) reduces NO_x via injection of ammonia or a urea-based reagent into the upper furnace &/or convection section (1500 -2200 ⁰F) of the boiler.

Reaction with Urea: $CO(NH_2)_2 + 2NO + \frac{1}{2}O_2 = 2N_2 + CO_2 + 2H_2O$

Possible byproducts due to poor process conditions (improper mixing, low residence time, lack of proper temperature etc.) are CO, high NH_3 , and N_2O . There is no urea emission.

Reaction with Ammonia: $6NO + 4NH_3 = 5N_2 + 6H_2O$

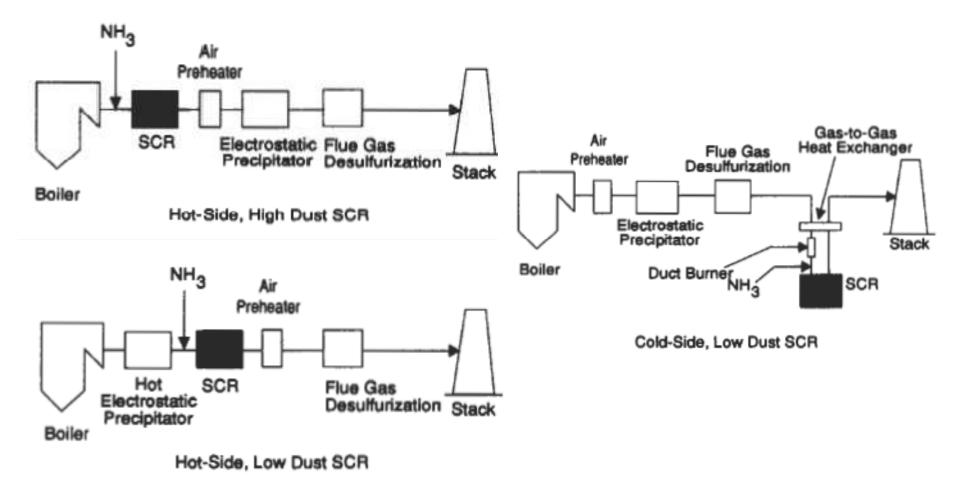
For Temp >1750 0 F: 4NH₃ + 5O₂ = 4NO + 6H₂O

The reaction between NO₂ & NH₃ is not known for certain. However, field observations & calculations indicate that flue gas NO₂ concentrations are typically less than 5% of the total NO_x. Therefore, NO₂ is not a major concern based on NO_x reduction levels.

Control options to reduce NO_x emission

POST-COMBUSTION NO_x CONTROL PROCESSES

Selective Catalytic Reduction (SCR) uses a catalyst to increase the rate of selective chemical reactions between $NO_x \& NH_3$ to produce $N_2 \& H_2O$. This process has the highest NO_x reduction capability (>90%) and is the most widely commercialized post-combustion control technology today.

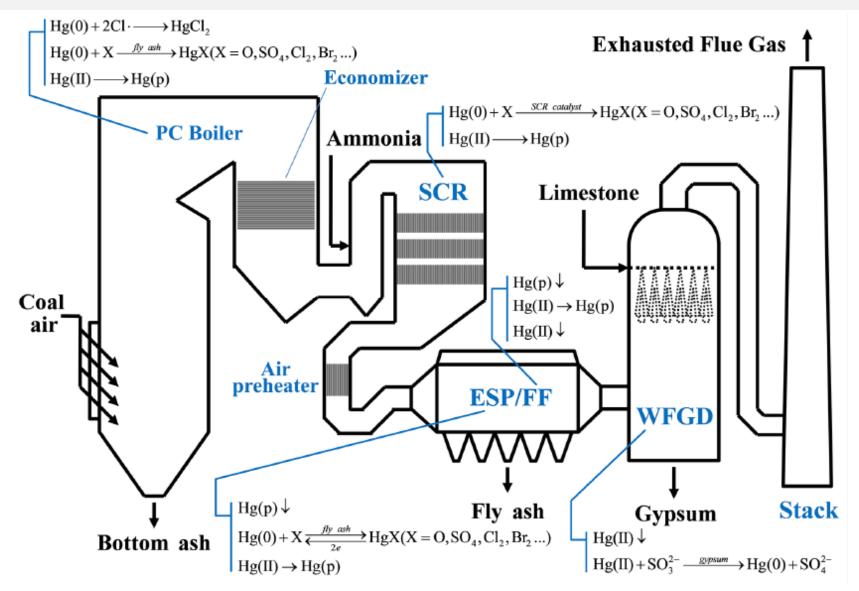

Chemical Reactions are as following:

 $4NO + 4NH_{3} + O_{2} = 4N_{2} + 6H_{2}O$ $2NO_{2} + 4NH_{3} + O_{2} = 3N_{2} + 6H_{2}O$ $6NO + 4NH_{3} = 5N_{2} + 6H_{2}O$ $6NO_{2} + 8NH_{3} = 7N_{2} + 12H_{2}O$ **Reaction Temp:** 500 - 750 °F

Control options to reduce NO_x emission POST-COMBUSTION NO_x CONTROL PROCESSES

Various phases of Hg in flue gas & options of Hg emission control

Proportions of Hg in various phases depend on coal category, combustion condition, temperature, flue gas composition & other factors.


Speciation	Phase	Reduction Method
Hg ⁰	Gaseous	Mainly obtained from Sub-Bituminous & Lignite fired boilers; Hardly soluble in water as it is relatively stable & can be adsorbed under certain condition; Hard to be removed by conventional flue gas pollution control facilities in coal-fired power plants.
Hg ²⁺	Gaseous	Mainly obtained from Bituminous fired boilers; Soluble in water which can easily be captured in wet FGD and absorbed on the surface of solids.
Hg _P	Particulate	Removed in particulate collection devices (ESP/ Bag Filter/ Wet Scrubber)
Broad approaches for Hg emission control		(i) powdered activated carbon injection &(ii) enhancement of existing emission control devices

Total Mercury , $Hg^T = Hg^0 + Hg^{2+} + Hg^P$

Ref.: Li Bing, Wand Hongliang, Xu Yueyang, Xue Jianming. Effect of wet flue gas desulfurization facilities of coal-fired power plants on mercury emission. Energy Procedia 156 (2019) 128-132; USEPA.

Controlling air pollutants (including Hg) in TPPs

Ref.: Zhang et al. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmos. Chem. Phys., 16, 2417–2433, 2016

Newly Promulgated Emission Standards for Indian Coal Fired TPPs revised timeline & Challenges before the Power Industries

Promulgated Stack Emission Standards for TPPs Notified by MoEFCC, Gol on 07.12.2015

Parameters	All values are in mg/Nm ³				
	TPPs in	TPPs to be installed			
	Before 31.12.2003	01.01.2004 to 31.12.2016	After 01.01.2017		
PM	100 50		30		
SO ₂	600 (< 500 MW) 200 (≥ 500 MW)	600 (< 500 MW) 200 (≥ 500 MW)	100		
NO _x	600	300	100		
Hg	0.03 (≥ 500 MW)	0.03	0.03		

Ref.: **MoEFCC.** The New Emission Standards vide Notification No. S.O. 3305(E) dated 07.12.2015 in The Gazette of India: Extraordinary. Ministry of Environment, Forest and Climate Change. Government of India. New Delhi. 2015. http://www.moef.gov.in/sites/default/files/Thermal%20plant%20gazette%20 scan.pdf

Revised action plan of Ministry of Power to meet new emission norms for TPPs (No. FU-1/2017-IPC dated 13.10.2017)

- > 650 units (196667 MW): To meet new emission limits of SO₂, PM & NO_x.
- SO₂ Emission: 415 units (161522 MW): FGD to be installed by 2022 [1 by 2018, 08 by 2019, 55 by 2020, 172 by 2021, 178 by 2022, 1 with 150 MW plan not received].
- SO₂ Emission: 235 units (35145 MW): either complying with limits or planned for phasing out, or have not submitted plan for FGD;
- PM Emission: 231 units (65925 MW): ESP upgradation for PM to be completed by 2022
 - [1 by 2018, 2 by 2019, 28 by 2020, 97 by 2021, 94 by 2022, 9 with 1400 MW plan not received]
- Out of 414 units, 64 units FGD installation & upgradation of ESPs will be completed by 31.12.2020;
- NO_x emission: suggested to adopt pre combustion modification such as in situ modification in boiler, installation of Low NO_x burners & Over Fire Air besides installation of SCR/SNCR wherever needed by 2022;
- Direction of MoEF&CC [F.No.Q-15017/40/2007-CPW dated 07.12.2017]: CPCB to direct all TPPs to ensure compliance with notified norms of 07.12.2015 as per the above revised plan of MoP.

Ref.: Directions issued by CPCB under Section 5 of the Environment (Protection) Act, 1986 regarding compliance of emission limit notified vide notification No.S.0.3305 (E) dated 07.12.2015 to M/s The Tata Power Company Limited vide letter B-33014/07/2018/IPC-II/TPP/375 dated 06.04.2018; https://cpcb.nic.in/openpdffile.php?id=UHVibGljYXRpb25GaWxlLzE2MTNfMTUyMzg3MTM5OV9tZWRpYXBob3RvMzI1NzkucGRm

Current status on particulate-laden-gas cleaning to Indian TPPs

Particulate Matter (PM)	ESP with efficiency of 99.6% & Use of beneficiated coal		
Sulfur Dioxide (SO ₂)	Dispersion by Tall Stack		
Few TPPs operate with FGDs			
Initiatives have been taken to install FGDs to many TPPs			
(detailed later)			
Oxide of Nitrogen (NO _x)	Low NO _x burners		
Mercury (Hg)	Existing APCD		

Challenges before the Power Industry

- CPCB & CEA have recommended wet limestone based FGD technology
- Non availability of space/land in the plants installed prior to 31.12.2003 to retrofit:

*FGD (to provide space for unit size ≥500 MW)
*ESP (Possible to increase SCA/ conversion into hybrid ESP)

- Few years' time for implementation of new norms
- Non availability of proven technology for control of NO_x
- Availability of Limestone & Disposal of, Gypsum (???)
- Substantial increase in tariff due to implementation of Norms

Trapped Hg? Hazardous waste?

Ref.: S.K.Paliwal. Environmental Regulations for Coal based Thermal Power Plant. Central Pollution Control Board. Delhi, India. 17th WCAC & 9th BAQ Conference at Busan, South Korea Aug 29 – Sep 02, 2016; Record notes of discussions of the meeting on 8th Dec 2017 at NRPC, Katwaria Sarai New Delhi held under Chairmanship of Member (Thermal), CEA, New Delhi on 'Adherence to Environmental Norms as per Environment (Protection) Amendment Rules 2015 for Thermal Power Stations' with IPPs-installations of FGD. 2017a. Available at http://www.cea.nic.in/reports/others/thermal/umpp/mom_environmentalnorms.pdf accessed on February 16, 2018.

Current Status on Installation & Commissioning of FGDs in Indian TPPs

All India Installed Capacity of Coal Fired Thermal Power Stations (in MW)

Region	State	Private	Central	Total	
Northern Region	16659	22425.83	14352.96	53437.79	
Western Region	21740	32847.17	19147.95	73735.12	
Southern Region	19782.5	12747	11835.02	44364.52	
Eastern Region	7450	6153	13684.05	27287.05	
North Easter Region	0	0	770.02	770.02	
ALL INDIA (Total)	65631.5	74173	59790	199594.5	
Data as on 30.11.2020 (Central Electricity Authority)					

FGD Progress Capacity (MW) for July 2020 [Central Electricity Authority]

Category	Central	Private	State	Total
FGD planned	55260	61237	53225	169722
Feasibility Study Started	55260	59327	51575	166162
Feasibility Study Completed	55260	53247	47515	156022
Tender Specifications Made	53370	45142	31865	130377
NIT Issued	53370	42742	26745	122857
Bids Awarded	34250	11160	2630	48040
FGD Commissioned	420	1320	0	1740
Total	307190	274175	213555	794920

FGD Progress Number of Units for July 2020 [Central Electricity Authority]

Category	Central	Private	State	Total
FGD planned	149	133	166	448
Feasibility Study Started	149	129	160	438
Feasibility Study Completed	149	111	152	412
Tender Specifications Made	140	90	97	327
NIT Issued	140	85	76	301
Bids Awarded	77	20	7	104
FGD Commissioned	2	2	0	4
Total	806	570	658	2034

Status of Indian FGDs

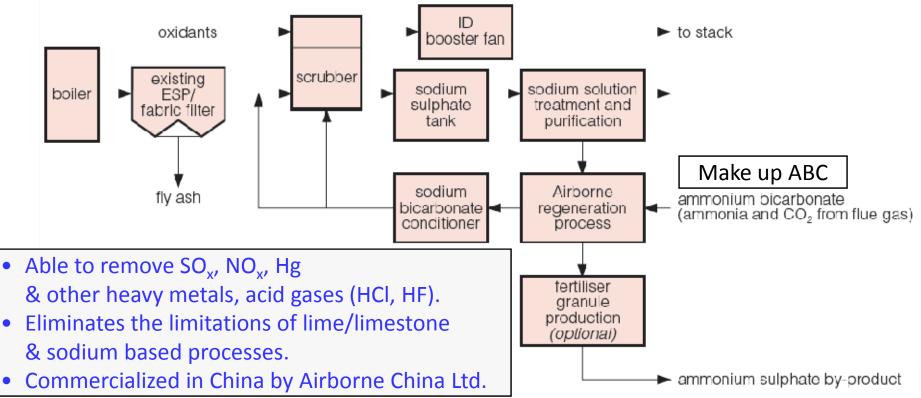
Company	Tata Power	Reliance	JSW	Adani	LANCO	NT	'PC
Location	Trombay	Dahanu	Ratnagiri	Mundra	Udupi	Vindhyachal	Bongaigaon
State	I	Maharashtra		Gujarat	Karnataka	MP	Assam
Capacity, MW	500 & 250	500	4 x300	1980	2x600	Stg V: 500	750
Type of FGD		Seaw	vater			Wet Limeston	е
Area, m ² /Acres	7,200	-	-	1,500 (scrubber)	10,000	10,000– 20,000	-
Water consmpn., 10 ⁻⁵ m ³ /year	147.73	876–1051	-	1.25 –1.40	3.06–3.50	6.13–8.76	-
Auxiliary power consumption	1–1.5%	1.25%	0.5-1.5%	1.5%	0.5%	1.1%	-
Reagent, kg/ hr	-	-	-	-	-	6,250	-
Status	Operating	Operating	Under Construction	Planned	Operating	Planned	Under Construction
Manufacturer	ABB	Ducon	Alstom	-	Ducon	BHEL	BHEL

Ref.: M.L.Cropper, S.Guttikunda, P.Jawahar, K.Malik, I.Partridge. "Costs and Benefits of Installing Flue-Gas Desulfurization Units at Coal-Fired Power Plants in India" Ch # 13 in "Injury Prevention and Environmental Health". Disease Control Group: 3rd End. World Bank Group. 2017

Clearing the Air: Pollution-control technology for coal-based power plants. Research Directed by Priyavrat Bhati, Programme Director, Energy Group, Centre for Science & Environment (CSE), 2016.

Multi Pollutant Control Technology for Coal Fired Thermal Power Plants – A Critical Review under Indian perspective

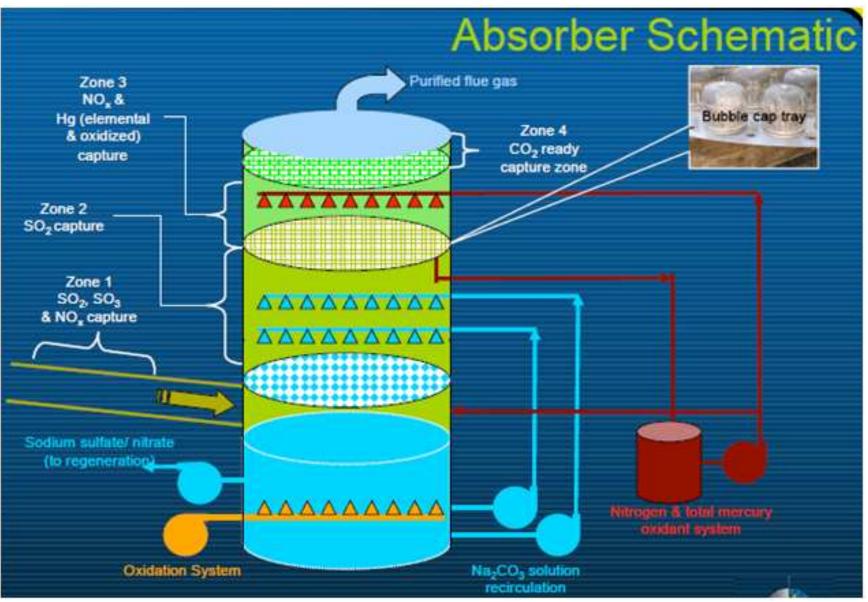
Multi-Pollutant Control Technology (MPCT)


MPCTs developed for -

- Removing two or more pollutants in a single system
- To achieve new emissions standards
- Lower cost than series of single pollutant control systems

Assessing Four MPCTs for Indian case: Sodium (NaOH or Na₂CO₃) based processes: (i) Airborne[™] Process (ii) NeuStream® Technology (iii) SkyMine® Aqueous NH₃ based: ECO®-ECO₂® Technology

MPCT: Airborne™ Process



AB Catalyst is injected into the Boiler @ 200 g/t coal for enhancing combustion efficiency & reduced formation of SO₂, NO_x & heavy metals. **Saleable products**: $(NH_4)_2SO_4$; NH_4NO_3 **C-Neutral Approach:** SO_x, NO_x & Hg stripped flue gas could be used as CO₂ source. **Removal:** 99.9% (SO₂ + SO₃), 99% NO_x, 99% Hg.

Developer: Airborne Clean Energy Ltd, Calgary, Canada. www.airbornecleanenergy.com

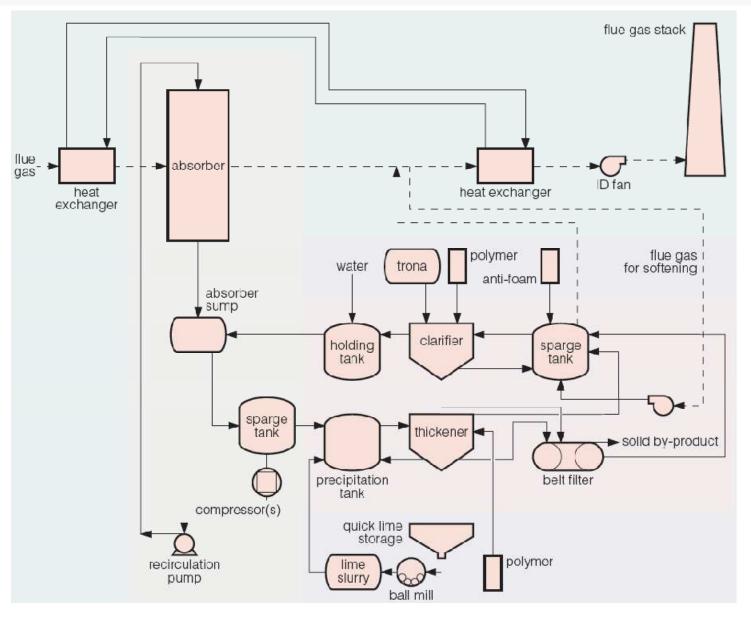
MPCT: Airborne™ Process

Ref.: <u>http://www.airbornecleanenergy.com/uploads/3/8/7/6/38765463/</u> cleancoalsummitconferenceacepresentationjune2006.pdf accessed on Oct 09/2016

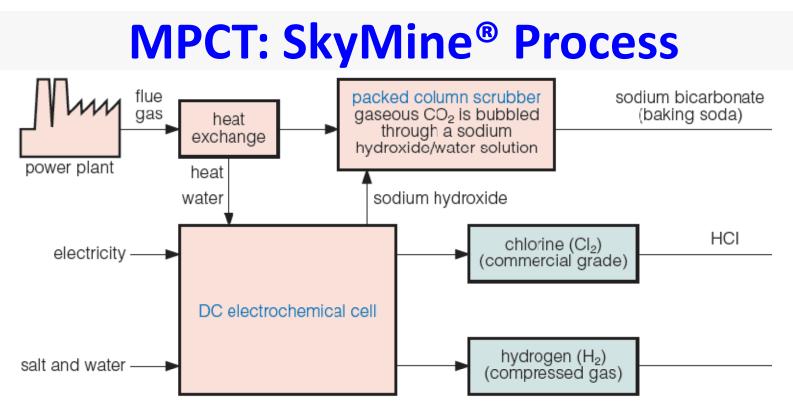
MPCT: NeuStream® 3-Stage Process

Step # 1. NeuStream®-N (O₃ duct injection): Oxidizes NO_x & Hg after ESP Step # 2. NeuStream[®]-S (dual-alkali FGD): removes SO₂, NO_x, HCl, HgO Trona absorbs $SO_2 \& NO_x$, lime regenerates solvent producing gypsum Capex, US\$ million Opex, US\$ million Basis: 500 MW NeuStream[®]-S 27.7 179.2 **Conventional Wet FGD** 394.4 54.3 Cost Savings for NeuStream[®]-S ~55% 50% **Step # 3. NeuStream[®]-C**: Amine (Piperazine) absorption of CO₂ **Removal:** Up to 97% SO₂, 98% HCl, >90% oxidized Hg (~80% total Hg), >90% NOx & 70–90% CO₂

Environmental Problems of Amine: formation of carcinogenic nitramines & nitrosamines, formation of secondary aerosols, production of tropospheric ozone, risks from hazardous wastes (generated from the spent amine)


Commercial Status: Commercial demonstration

Developer: Neumann Systems Group. www.neumannsystemsgroup.com


Ref.: A.M. Carpenter. Advances in multi-pollutant control. IEA Clean Coal Centre. 2013

MPCT: NeuStream®-S Process

Ref.: A.M. Carpenter. Advances in multi-pollutant control. IEA Clean Coal Centre. 2013

Reagent: NaOH from electrolysis of Brine. Saleable ProductsSkyMine: Removes CO_2 , SOx, NO_2 , Hg & other heavy metals from flue gasCost: 600 billion USD for 1325 MW; 23 USD/t CO_2 ; Excluding revenue from productsPenalty: 20% as against 30 to 40% for CCSOption (non-carbon mode) for removing SO_2 , NO_2 & heavy metals (SkyScrapper)Commercial Status: Commercial demonstrationRemoval: >99% ($SO_2 + NO_2$), 90% Hg, 80–90% CO_2

MPCT: ECO®-ECO₂® Technology

Step # 1. Dielectric Barrier Discharge (Plasma) Reactor: Oxidizes NO to NO_2 ; SO_2 to SO_3 & Hg to HgO

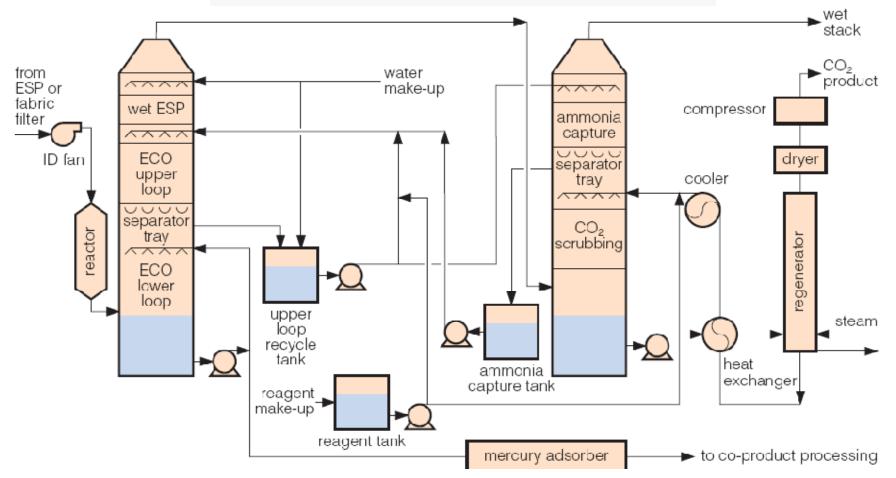
Step # 2. $NO_2 \& SO_2$ reacts with water vapor in ECO[®] dual loop wet scrubber to form $HNO_3 \& H_2SO_4$. Aq. NH_3 converts these acids here to $NH_4NO_3 \& (NH_4)_2SO_4$ (Fertilizer products).

Step # 3. $NO_2 \& SO_2$ scrubbed flue gas enters into ECO_2° scrubber to capture CO_2 followed by its thermal swing regeneration & compression for use while aq. NH_3 can be recycled.

Cost: Capital & operating costs are ~ 10–20% lower than conventional wet FGD + SCR

Removal: > 98% SO₂, >90% NOx, 98% HCl, >85% oxidized Hg, & 90% CO₂

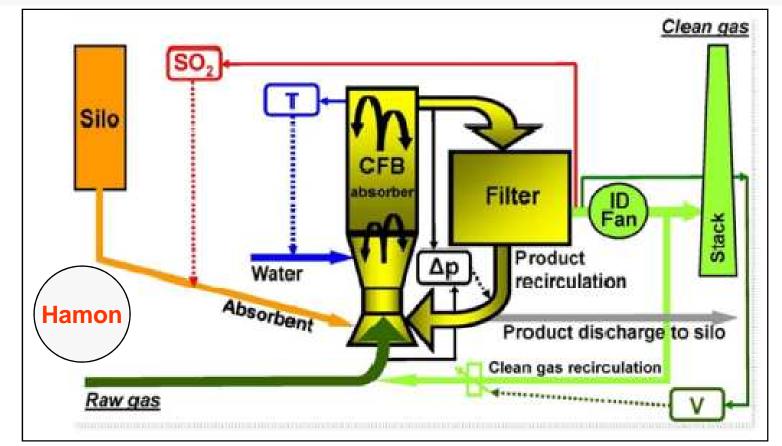
Environmental Problems of Ammonia: Handling NH₃ attracts stringent safety measures & NH₃ slippage to atmosphere


Commercial Status: Yet to be demonstrated at full scale

Developer: Eco Power Technology Center in Louisville, KY, USA. http://powerspan.com

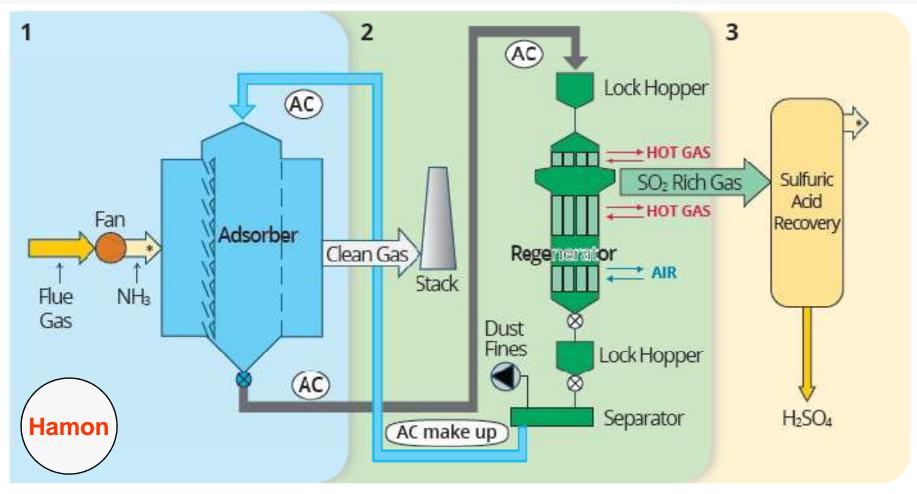
MPCT: ECO®-ECO₂® Technology

Integrated ECO®-ECO₂® process


MPCTs vs Limestone Wet FGD for India

Process, Reagents & Products	Pollutants removed	Status
Limestone Wet Scrubbers (FGD) Limestone slurry as reagent. Gypsum (Hg trapped) is the by-product.	95–99% SO ₂ , <60% SO ₃ , >98% (HCl + HF), 75–99% oxidized Hg (>50% total Hg)	Commercial No total emission control
Airborne Process: Regenerable Na_2CO_3 injection with scrubbing & oxidant wash. Saleable fertilizers	99.9% (SO ₂ + SO ₃), 99.5% NOx, 99.5% Hg [C-neutral & CO ₂ can be captured for use in the gas phase]	Commercial [\$200-290/kW, 2005 estimate]
SkyMine: NaOH is reagent. Saleable carbonates &/or bicarbonates, H ₂ & Cl ₂	>99% (SO ₂ + NO ₂), 90% Hg, 80–90% CO ₂	Commercial demonstration (cement plant)
NeuStream: O_3 injection for NO_x + dual-alkali scrubbing + CO_2 capture by Amines. Saleable by-products.	97% SO ₂ , >90% NOx, 98% HCl, >90% oxidized Hg, 70–90% CO ₂ Amine emission problem	Commercial demonstration [\$255-295/kW]
ECO[®]-ECO₂[®]: Plasma Oxidation Reactor, NH_3 scrubber for SO ₂ , $NO_2 \& CO_2$	> 98% SO ₂ , >90% NOx, 98% HCl, >85% oxidized Hg, & 90% CO ₂ Ammonia leakage problem	Commercial demonstration not yet done

MCPTs shown here are relatively less costly than wet FGD + SCR


Combined Removal of SO_x and PM [Semi dry FGD technology on Circulating fluidized bed]

* Desulphurization efficiency above 99 % can be achieved • No CO₂ Capture • Dry Absorbent (Lime) & Product = Gypsum

Regenerative Activated Coke Technology: ReACT[™]

Emission Reduction in ReACT™

- >95% to 99.9% SO₂(depending on equipment configuration)
- 25% to 80% NO_x (depending on equipment configuration)
- >95% mercury (including elemental species)
- Net reduction of PM
- Net reduction of Heavy Metals
- No CO₂ Removal/Capture
- Commercialized: Isogo Power Plant 600 MW
- Product = Sulfuric Acid

Hamon Research- Cottrell India Private limited: Office at Chennai

Critical Appraisal of MPCTs

Airborne Process[™] & SkyMine[®] produce saleable by-products Lower Carbon & water foot prints than limestone based wet FGD

Indian advantage is reported by Dr. L.L.Sloss (Nov 2015) -

"Pollution control technologies are expensive and take time to install. It would therefore make sense for India to coordinate pollution control systems and to focus as much as possible on multi-pollutant control systems which will reduce emissions of several pollutants simultaneously."

Poullikkas (2015) reported that the emerging technologies for combined control of $SO_2 \& NO_x$ emissions have the potential to curb these emissions for less than the combined cost of conventional wet FGD for $SO_2 \& SCR$ for NO_x controls. Some of these technologies are commercially used on low to medium sulfur coal fired TPPs.

Ref.: A.M. Carpenter. Advances in multi-pollutant control. IEA Clean Coal Centre. 2013

L.L.Sloss. *Coal in the Indian Energy future – emissions and policy considerations.* IEA Clean Coal Centre, Nov 2015. **Poullikkas, A.** Review of Design, Operating, and Financial Considerations in Flue Gas Desulfurization Systems. Energy Technology & Policy. 2:1, 92-103, 2015.

Critical Appraisal of MPCTs: Cost Comparison

Pollution Control Technology	Capital Cost/MW (Rs)	O&M Cost/MW.annum		
Case - I				
Wet FGD	Rs 50,00,000 (USD 72,175)	Rs 6,00,000 (USD 8,661)		
Low-NO _x Burner + OFA	Rs 8,00,000 (USD 11,548)	0		
Total	Rs 58,00,000	Rs 6,00,000		
Hg trapped Gypsum disposal	?	?		
Concerns: Revenue from Hg trapped	Gypsum - ?. Hg emission fro	om Gypsum disposal site.		
Case - II				
Wet FGD	Rs 50,00,000 (USD 72,175)	Rs 6,00,000 (USD 8,661)		
SCR for NO _x control	Rs 30,00,000 (USD 43,305)	Rs 50,000 (USD 722)		
Total	Rs 80,00,000	Rs 6,50,000		
Hg trapped Gypsum disposal	?	?		
Concerns: Revenue from Hg trapped Gypsum - ?. Hg emission from Gypsum disposal site.				
Pollution Control Technology Cost Estimate/MW (vendor specified; 2005 estimate)				
Air Borne MPCT	\$ 200,000-290,000: Rs 14,000,000 - 20,300,000			
System is ready for producing saleable fertilizer & no separate cost is involved. Revenue from saleable fertilizer is not known but it is favorable.				

Research on CO₂ Capture in India: A brief assessment under the premise of newly promulgated Emission Standards for TPPs

Status of Indian Research on CO₂ Capture

Legion of R&D projects are funded by various Govt. agencies in India for CO₂ capture from simulated streams by various methods.

These researches ignore the estimated CO_2 generation from the processes developed to capture the CO_2 .

Number of seminars etc. are being held in India for the past several years on CO₂ capture. In contrast, seminars or even funded R&D projects for SO₂ removal (or FGD) and MPCTs in India are few & far between before the promulgation of emission standards.

The major research areas towards CO_2 capture/removal include – (i) developing membranes (inorganic/organic) for CO_2 capture, (ii) absorption of CO_2 in amine based blended solvents, (iii) removal of CO_2 on synthesized nano-materials as adsorbents. (iv) biological methods for CO_2 capture.

Status of Indian Research on CO₂ Capture

Main thrust on R&D: Material development for CO₂ capture

- Demonstration project commissioned on a slip-stream from the flue gas of an Indian TPP has not yet been reported.
- Presence of other gases & traces of PM might not have yet been included in any of the Indian CO₂ capture projects.
- These projects can not be directly put into practice in any Indian TPP without comprehensive studies taking into account of the plurality of pollutants present in the flue gas emitted from TPPs.
- The life cycle analysis is mostly left out in the current Indian CO₂ capture projects which essentially constitutes an integral approach under the present circumstances.

Assessing the current Indian Scenario

Assessing the Indian Scenario

Newly promulgated Emission Standards for Indian cola fired TPPs are concentration based & not technology/equipment based.

Thus, Indian TPPs are free to choose any tech./equip. to meet the newly promulgated emission standards as per The Air (PCP) Act, 1981 & The Environment (Protection) Act, 1986.

Techno-enviro-economic solution is demanding to achieve the target.

Clarification of CEA (CEA, Dec 2017) ".... presently CEA has come up with standard technical specifications for wet FGD, however, this is only advisory in nature and power producers have liberty to choose any suitable technology for reducing SO_x ."

Thus there is a scope of selecting SO₂ removal technology other than wet limestone based FGD under Indian context.

A Paper on Plant Location Specific Emission Standards [Central Electricity Agency]

Background: Dispersion modelling study conducted by IIT Kanpur for the impact of Talwandi Sabo thermal power plant (District Mansa, Punjab) emissions to the ambient air quality.

Data used in the Modeling

- Exit Gas Velocity = 25 m/s (Full Load: 660 MW); 17 to 19 m/s (350 MW)
- Volumetric gas flow rate in the stack = 23,77,880 Nm³/hr (dry basis)
- Stack gas Temp = 125 to 130 °C
- Stack Height = 275 m
- Stack diameter at top = 10.45m
- \blacktriangleright SO₂ emission rate = 2.77 kg/s for 1980 MW (0.975 kg/s for 660 MW)
- \blacktriangleright NO_x Emission rate = 0.55 kg/s (20% of SO₂ emission rate)

Findings of the Dispersion study: SO_2 levels of about 45.9µg/m³ at the plant drop significantly to 1µg/m³ at a distance of 40 km. Thus, beyond 40 km the impact of SO_2 becomes insignificant. Similar trend is seen for NO_x .

National Ambient Air Quality Standards (NAAQS), 2009

Pollutants	Concentration in Ambient Air (values are in µg/m ³)			
	Industrial, Residential, Rural & other areas		Ecologically Sensitive areas (Notified by Central Govt.	
	Annual Average	24-hourly Average	Annual Average	24-hourly Average
SO ₂	50	80	20	80
NO ₂	40	80	30	80
PM ₁₀	60	100	60	100
PM _{2.5}	40	60	40	60

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year, 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

Note: Whenever and wherever monitoring results on two consecutive days of monitoring exceed the limits specified above for the respective category, it shall be considered adequate reasons to institute regular or continuous monitoring and further investigation

AQI categories & health breakpoints for air pollutants

AQI Category	AQI	Concentration (µg/m ³) range			
		24-hourly average values			
		PM ₁₀	PM _{2.5}	NO ₂	SO ₂
Good	0 - 50	0 - 50	0 - 30	0 - 40	0 - 40
Satisfactory	51 - 100	51 - 100	31 - 60	41 - 80	41 - 80
Moderately polluted	101 - 200	101 -250	61 - 90	81 -180	81 - 380
Poor	201 - 300	251 -350	91 -120	181 -280	381 -800
Very poor	301 - 400	351 -430	121 -250	281 -400	801 - 1600
Severe	401 - 500	430 +	250+	400+	1600+

Out of 8, 4 air pollutants are mentioned here for the purpose of current analysis

Ref.: About National Air Quality Index. https://cpcb.nic.in/displaypdf.php?id=bmF0aW9uYWwtYWlyLXF1YWxpdHktaW5kZXgvQWJvdXRfQVFJLnBkZg==

A Paper on Plant Location Specific Emission Standards [Central Electricity Agency]

Capacity wise Classification of TPPs followed by Phasing of FGD Installation based on levels of 24-hrly avg (max) SO_2 Concentration in the vicinity of TPPs

Region	Concentr Amb	els SO ₂ ration in the pient Air re in μg/m ³)	Total Capacity (MW)	Remarks
1	Level-I	>40	1,460	FGD shall be installed immediately
2	Level-II	>30 & ≤40	5,048	FGD shall be installed in 2 nd phase, may be after 1 year of commissioning of 1 st phase units & observing the effectiveness of installed equipment.
3	Level-III	>20 & ≤30	290	FGD is not required at present
4	Level-IV	>10 & ≤20	17,890	FGD is not required at present
5	Level-V	>0 & ≤10	11,020	FGD is not required at present

AAQ data of many Indian places (CPCB) and SO_2 monitored data reported by TPPs along with the findings of the dispersion study have been used to make the classification.

A Paper on Plant Location Specific Emission Standards [Central Electricity Agency]

Reported Concerns:

- There should be graded action plan for adopting new emission norms for TPPs as proposed rather than adopting a single deadline for large base of power plants across the country.
- An unworkable time schedule will create market scarcity leading to import, jacked up prices unnecessary burden on power utilities.
- Graded action plan will help in utilizing the resources in effective manner and it will help in fine tuning the technology for local conditions.
- If the process of emission control is completed in 10-15 years' time frame for TPPs located in critically polluted areas in first phase, it will help in developing indigenous manufacturing base, skilled manpower in the country which shall take care of the local operating conditions.

1. A Task Force at national level under the aegis of MoEFCC/ CPCB & CEA may be constituted to monitor the compliance status of the newly promulgated emission standards

Proposed composition of the Task Force -

- i) Experts from MoP, MoC, MoEFCC, CPCB, CEA, CERA, POSOCO
- (ii) Experts from TPPs like NTPC/DVC/SEBs
- iii) Experts from Inorganic Chemical & Fertilizer Industries
- iv) Technology Field Experts -
 - (a) Emission Control/ Gas Cleaning Technology
 - (b) CO₂ Capture & Sequestration (Geologic/CO₂ Reuse)
- v) Policy Experts

CEA: Central Electricity Authority; CERC: Central Electricity Regulatory Commission POSOCO: Power System Operation Corporation Limited

Ref.: A.Bandyopadhyay. Assessing the Current Practice and Policy with Recommendations for Emission Control Strategy for Coal Fired Thermal Power Plants under Indian Regulatory Framework emphasizing the Roles of R&D. Environmental Quality Management for publication, 27, 49–55, 2017b"; https://doi.org/10.1002/tqem.21511

- 2. To consider revamping ESP for controlling emission of fly ash.
- 3. To consider a single technology for cleaning multiple pollutants than installing a standalone FGD system, without ignoring CO₂ capture though it is not a listed parameter in the promulgated emission standards.
- 4. To consider market potential of the by-products of gas cleaning so that the same may not create disposal problems like gypsum.
- For CCS, to consider Zoning- typical examples are # TPPs located at Durgapur, WB may have CCS for ECBMR # TPPs located elsewhere, e.g., at Mejia, WB may have MCPT with saleable by products (avoiding CCS project here).

Ref.: A.Bandyopadhyay. Assessing the Current Practice and Policy with Recommendations for Emission Control54Strategy for Coal Fired Thermal Power Plants under Indian Regulatory Framework emphasizing the Roles of R&D.54Environmental Quality Management for publication, 27, 49–55, 2017b"; https://doi.org/10.1002/tqem.2151154

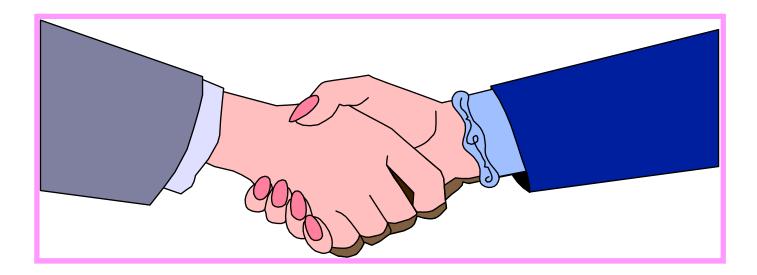
- 6. To consider utilization of captured CO₂ as
 (i) saleable products &
 (ii) sequestration as in CCS projects e.g. in ECBMR.
- Indian Power Sector may like to establish collectively National Emission Control Technology Research Centre (including Research on CO₂ Capture) indicating the role of Indian R&D towards industrial gas cleaning (business to business or multisectoral approach) targeting lower water- & carbon- footprints.
- 8. To consider support for other logistics, if any.
- 9. To follow the principle of Charter on Corporate Responsibility of Environmental Protection (CREP) for developing "Technology Guidelines".

Ref.: A.Bandyopadhyay. Assessing the Current Practice and Policy with Recommendations for Emission Control Strategy for Coal Fired Thermal Power Plants under Indian Regulatory Framework emphasizing the Roles of R&D. Environmental Quality Management for publication, 27, 49–55, 2017b"; https://doi.org/10.1002/tqem.21511

55

- 10. To propose Capacity Building Programme on Advanced Emission Control Technology for TPPs, SPCBs/ PCCs/ CPCB for framing post-implementation strategies.
- To plan for (i) regular Stack Emission monitoring for air pollutants & (ii) AAQ Monitoring for relevant parameters in the vicinity of the TPPs coupled with dispersion modeling that will help future planning & decision making.
- 12. "Gas Cleaning Plants" require the knowledge of thermodynamics, chemical kinetics & mass transfer. "Chemical Engineers" are appropriately equipped with such knowledge.
- 13. Indian TPPs will require "*Chemical Engineers*" for meeting the challenges of the new emission standards. Outsourcing of experts may not be conducive in the long run.
- 14. Submission of recommendations by the *Task Force* to the Government of India for consideration.

Ref.: A.Bandyopadhyay. Assessing the Current Practice and Policy with Recommendations for Emission Control Strategy for Coal Fired Thermal Power Plants under Indian Regulatory Framework emphasizing the Roles of R&D. Environmental Quality Management for publication, 27, 49–55, 2017b"; https://doi.org/10.1002/tqem.21511


Experience in Inspecting Coal Fired Thermal Power Plants for Compliance of Parameters listed in EC/CoO

Number of inspections made to coal fired Thermal Power Plants while associated with WBPCB

SI #	Name of the Thermal Power Station	Capacity	Number of visits
1	Durgapur Projects Limited	2x30 MW	10 (27.04.1998 to 05.12.2001)
		3x77 MW	
		110 MW	
2	Durgapur Thermal Power Plant, DVC	140 MW	07 (29.04.1998 to 19.09.2001)
		210 MW	
3	Santaldih Thermal Power Plant	4x120 MW	03 (09.10.1998 to 01.03.2001)
4	Dishergarh Power Supply Corporation	3x10 MW	04 (29.08.1999 to 26.12.2001)
	Ltd. Dishergarh Unit		
5	Dishergarh Power Supply Corporation	3x5 MW	03 (29.08.1999 to 01.11.2000)
	Ltd. Chinakuri Unit	3 MW	
6	Mejia Thermal Power Plant, DVC	3x210 MW	03 (24.12.1999 to 21.11.2001)
7	Bakreshwar Thermal Power Plant	3x210 MW	03 (06.01.2001 to 08.11.2001)
8	Durgapur Steel Plant: Captive Power	2x60 MW	09 (28.07.1998 to 06.12.2001)
	Plant		
9	Kolaghat Thermal Power Plant	6x210 MW	15 (21.01.2002 to 15.03.2004)
10	CESC, Budge Budge Thermal Power	3x250 MW	18 (25.05.2004 to 29.05.2007)
	Plant		
	TOTAL	75 (27.04.1998 to 29.05.2007)	

Thank You

